Dezhe Jin

Associate Professor of Physics

Dezhe Jin

Research Summary

Computational models of neural basis of motor control and learning; theoretical analysis of biological neural networks.

Huck Graduate Students

Huck Affiliations

Most Recent Publications

Yehen Tupikov, Dezhe Jin, PLoS Computational Biology on p. e1008824

Partially observable Markov models inferred using statistical tests reveal context-dependent syllable transitions in Bengalese finch songs

Jiali Lu, Sumithra Surendralal, Kristofer Bouchard, Dezhe Jin, 2025, Journal of Neuroscience on p. e0522242024

Benjamin M. Zemel, Alexander A. Nevue, Leonardo E.S. Tavares, Andre Dagostin, Peter V. Lovell, Dezhe Z. Jin, Claudio V. Mello, Henrique von Gersdorff, 2023, eLife

Yevhen Tupikov, Dezhe Z. Jin, 2021, PLoS Computational Biology

Robert Egger, Yevhen Tupikov, Margot Elmaleh, Kalman A. Katlowitz, Sam E. Benezra, Michel A. Picardo, Felix Moll, Jörgen Kornfeld, Dezhe Z. Jin, Michael A. Long, 2020, Cell on p. 537-548.e12

Dezhe Z. Jin, Ting Zhao, David L. Hunt, Rachel P. Tillage, Ching Lung Hsu, Nelson Spruston, 2019, Frontiers in Neuroinformatics

Yisi S. Zhang, Jason D. Wittenbach, Dezhe Z. Jin, Alexay A. Kozhevnikov, 2017, Journal of Neuroscience on p. 2600-2611

Arik Kershenbaum, Daniel T. Blumstein, Marie A. Roch, Çağlar Akçay, Gregory Backus, Mark A. Bee, Kirsten Bohn, Yan Cao, Gerald Carter, Cristiane Cäsar, Michael Coen, Stacy L. Deruiter, Laurance Doyle, Shimon Edelman, Ramon Ferrer-i-Cancho, Todd M. Freeberg, Ellen C. Garland, Morgan Gustison, Heidi E. Harley, Chloé Huetz, Melissa Hughes, Julia Hyland Bruno, Amiyaal Ilany, Dezhe Z. Jin, Michael Johnson, Chenghui Ju, Jeremy Karnowski, Bernard Lohr, Marta B. Manser, Brenda Mccowan, Eduardo Mercado, Peter M. Narins, Alex Piel, Megan Rice, Roberta Salmi, Kazutoshi Sasahara, Laela Sayigh, Yu Shiu, Charles Taylor, Edgar E. Vallejo, Sara Waller, Veronica Zamora-Gutierrez, 2016, Biological Reviews on p. 13-52

Jason D. Wittenbach, Kristofer E. Bouchard, Michael S. Brainard, Dezhe Z. Jin, 2015, PLoS Computational Biology on p. e1004471

Arik Kershenbaum, Ann E. Bowles, Todd M. Freeberg, Dezhe Z. Jin, Adriano R. Lameira, Kirsten Bohn, 2014, Proceedings of the Royal Society B: Biological Sciences

Most-Cited Papers

Arik Kershenbaum, Daniel T. Blumstein, Marie A. Roch, Çağlar Akçay, Gregory Backus, Mark A. Bee, Kirsten Bohn, Yan Cao, Gerald Carter, Cristiane Cäsar, Michael Coen, Stacy L. Deruiter, Laurance Doyle, Shimon Edelman, Ramon Ferrer-i-Cancho, Todd M. Freeberg, Ellen C. Garland, Morgan Gustison, Heidi E. Harley, Chloé Huetz, Melissa Hughes, Julia Hyland Bruno, Amiyaal Ilany, Dezhe Z. Jin, Michael Johnson, Chenghui Ju, Jeremy Karnowski, Bernard Lohr, Marta B. Manser, Brenda Mccowan, Eduardo Mercado, Peter M. Narins, Alex Piel, Megan Rice, Roberta Salmi, Kazutoshi Sasahara, Laela Sayigh, Yu Shiu, Charles Taylor, Edgar E. Vallejo, Sara Waller, Veronica Zamora-Gutierrez, 2016, Biological Reviews on p. 13-52

Robert Egger, Yevhen Tupikov, Margot Elmaleh, Kalman A. Katlowitz, Sam E. Benezra, Michel A. Picardo, Felix Moll, Jörgen Kornfeld, Dezhe Z. Jin, Michael A. Long, 2020, Cell on p. 537-548.e12

Yisi S. Zhang, Jason D. Wittenbach, Dezhe Z. Jin, Alexay A. Kozhevnikov, 2017, Journal of Neuroscience on p. 2600-2611

Jason D. Wittenbach, Kristofer E. Bouchard, Michael S. Brainard, Dezhe Z. Jin, 2015, PLoS Computational Biology on p. e1004471

Dezhe Z. Jin, Ting Zhao, David L. Hunt, Rachel P. Tillage, Ching Lung Hsu, Nelson Spruston, 2019, Frontiers in Neuroinformatics

Benjamin M. Zemel, Alexander A. Nevue, Leonardo E.S. Tavares, Andre Dagostin, Peter V. Lovell, Dezhe Z. Jin, Claudio V. Mello, Henrique von Gersdorff, 2023, eLife

Yevhen Tupikov, Dezhe Z. Jin, 2021, PLoS Computational Biology

Partially observable Markov models inferred using statistical tests reveal context-dependent syllable transitions in Bengalese finch songs

Jiali Lu, Sumithra Surendralal, Kristofer Bouchard, Dezhe Jin, 2025, Journal of Neuroscience on p. e0522242024

News Articles Featuring Dezhe Jin

AI-generated birdsongs may shed new light on human language

Scientists have developed an AI-powered modeling method that mimics how birds produce songs, similar to how large language models like ChatGPT generate human sentences.

Why birds need to hear themselves sing—and what it teaches us about human language

A new international study of Bengalese finches suggests the answer could reshape our understanding of how all brains, even human ones, process complex sequences.

ChatGPT for birdsong may shed light on how language is wired in the human brain

Just like ChatGPT and other generative language models train on human texts to create grammatically correct sentences, a new modeling method by researchers at Penn State trains on recordings of birds to create accurate birdsongs.

National Institutes of Health funds neural engineering graduate training program

Penn State has a new cross-disciplinary program to train graduate students interested in the complex landscape of the human brain, supported by a $1.5 million grant from the National Institutes of Health (NIH).

Researchers deconstruct the 'biological clock' that regulates birdsong

The precise timing of a bird's complex song is driven in part by the often-ignored “wires” connecting neurons in the bird's brain, according to a new study. A team of researchers from Penn State and NYU Langone Health has deconstructed an important “biological clock” that regulates birdsong and other behaviors, leading to new ways of thinking about the function of neuronal networks.