Daniel Kifer
Professor of Computer Science & Engineering
-
W333 Westgate
University Park, PA - duk17@psu.edu
- 814-863-1187
Huck Affiliations
Links
Most Recent Publications
Reply to Muralidhar et al., Kenny et al., and Hotz et al.: The benefits of engagement with external research teams
Ron S. Jarmin, John M. Abowd, Robert Ashmead, Ryan Cumings-Menon, Nathan Goldschlag, Michael Hawes, Sallie Ann Keller, Daniel Kifer, Philip Leclerc, Jerome P. Reiter, Rolando A. Rodríguez, Ian Schmutte, Victoria A. Velkoff, Pavel I. Zhuravlev, 2024, Proceedings of the National Academy of Sciences of the United States of America
PatchRefineNet: Improving Binary Segmentation by Incorporating Signals from Optimal Patch-wise Binarization
Savinay Nagendra, Daniel Kifer, 2024, on p. 1350-1361
EXACT PRIVACY ANALYSIS OF THE GAUSSIAN SPARSE HISTOGRAM MECHANISM
Brian Karrer, Daniel Kifer, Arjun Wilkins, Danfeng Zhang, 2024, Journal of Privacy and Confidentiality
Backpropagation-Free Deep Learning with Recursive Local Representation Alignment
Alexander G. Ororbia, Ankur Mali, Daniel Kifer, C. Lee Giles, 2023, on p. 9327-9335
Using a physics-informed neural network and fault zone acoustic monitoring to predict lab earthquakes
Prabhav Borate, Jacques Rivière, Chris Marone, Ankur Mali, Daniel Kifer, Parisa Shokouhi, 2023, Nature Communications
Differentiable modelling to unify machine learning and physical models for geosciences
Chaopeng Shen, Alison P. Appling, Pierre Gentine, Toshiyuki Bandai, Hoshin Gupta, Alexandre Tartakovsky, Marco Baity-Jesi, Fabrizio Fenicia, Daniel Kifer, Li Li, Xiaofeng Liu, Wei Ren, Yi Zheng, Ciaran J. Harman, Martyn Clark, Matthew Farthing, Dapeng Fang, Dapeng Feng, Praveen Kumar, Doaa Aboelyazeed, Farshid Rahmani, Yalan Song, Hylke E. Beck, Tadd Bindas, Dipankar Dwivedi, Kuai Fang, Marvin Höge, Chris Rackauckas, Binayak Mohanty, Tirthankar Roy, Chonggang Xu, Kathryn Lawson, 2023, Nature Reviews Earth and Environment on p. 552-567
Answering Private Linear Queries Adaptively using the Common Mechanism
Yingtai Xiao, Guanhong Wang, Danfeng Zhang, Daniel Kifer, 2023, Proceedings of the VLDB Endowment on p. 1883-1896
An in-depth examination of requirements for disclosure risk assessment
Ron S. Jarmin, John M. Abowd, Robert Ashmead, Ryan Cumings-Menon, Nathan Goldschlag, Michael B. Hawes, Sallie Ann Keller, Daniel Kifer, Philip Leclerc, Jerome P. Reiter, Rolando A. Rodríguez, Ian Schmutte, Victoria A. Velkoff, Pavel Zhuravlev, 2023, Proceedings of the National Academy of Sciences of the United States of America
An Optimal and Scalable Matrix Mechanism for Noisy Marginals under Convex Loss Functions
Yingtai Xiao, Guanlin He, Danfeng Zhang, Daniel Kifer, 2023, Advances in Neural Information Processing Systems
The neural coding framework for learning generative models
Alexander Ororbia, Daniel Kifer, 2022, Nature Communications
Most-Cited Papers
Pufferfish: A framework for mathematical privacy definitions
Daniel Kifer, Ashwin Machanavajjhala, 2014, ACM Transactions on Database Systems
Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network
Kuai Fang, Chaopeng Shen, Daniel Kifer, Xiao Yang, 2017, Geophysical Research Letters on p. 11,030-11,039
HESS Opinions: Incubating deep-learning-powered hydrologic science advances as a community
Chaopeng Shen, Eric Laloy, Amin Elshorbagy, Adrian Albert, Jerad Bales, Fi John Chang, Sangram Ganguly, Kuo Lin Hsu, Daniel Kifer, Zheng Fang, Kuai Fang, Dongfeng Li, Xiaodong Li, Wen Ping Tsai, 2018, Hydrology and Earth System Sciences on p. 5639-5656
Learning to extract semantic structure from documents using multimodal fully convolutional neural networks
Xiao Yang, Ersin Yumer, Paul Asente, Mike Kraley, Daniel Kifer, Clyde Giles, 2017, on p. 4342–4351
Crime rate inference with big data
Hongjian Wang, Daniel Kifer, Corina Graif, Zhenhui Li, 2016, on p. 635-644
Learning to read irregular text with attention mechanisms
Xiao Yang, Dafang He, Zihan Zhou, Daniel Kifer, C. Lee Giles, 2017, on p. 3280-3286
A Simple Baseline for Travel Time Estimation using Large-scale Trip Data
Hongjian Wang, Xianfeng Tang, Yu Hsuan Kuo, Daniel Kifer, Zhenhui Li, 2019, ACM Transactions on Intelligent Systems and Technology
A neural temporal model for human motion prediction
Anand Gopalakrishnan, Ankur Mali, Dan Kifer, Lee Giles, Alexander G. Ororbia, 2019, on p. 12108-12117
Multi-Scale Multi-Task FCN for Semantic Page Segmentation and Table Detection
Dafang He, Scott Cohen, Brian Price, Daniel Kifer, C. Lee Giles, 2017, on p. 254-261
Concentrated differentially private gradient descent with adaptive per-iteration privacy budget
Jaewoo Lee, Daniel Kifer, 2018, on p. 1656-1665